Archive - Sep 12, 2008

<small>EU-Zulassung für Sugammadex:<br>Erster Wirkstoff, der Relaxantien selektiv bindet</small>

<a href=http://www.aesca.at>AESCA Pharma</a>, eine Tochter von Schering-Plough, hat von der EU-Kommission die Zulassung für die Injektionslösung Sugammadex erhalten. Der Wirkstoff bindet während einer Operation verwendete Muskelrelaxantien selektiv und bedeutet somit den ersten wesentlichen pharmazeutische Fortschritt in der Anästhesiologie seit 20 Jahren. <% image name="AESCA_Logo" %><p> <table> <td width="110"></td><td><small> Die Muskelrelaxantien Rocuronium und Vecuronium werden im Rahmen der Vollnarkose eingesetzt, um die Muskeln der Patienten zu entspannen, die chirurgischen Bedingungen zu verbessern und die künstliche Beatmung zu erleichtern. </small></td> </table> Die Wirkung von Sugammadex setzt rasch ein und trägt zur routinemäßigen Umkehr der durch Rocuronium bzw. Vecuronium induzierten neuromuskulären Blockade am Ende der Operation bei, damit Patienten ihre normale Muskelfunktion schneller zurückgewinnen und rascher selbständig atmen können. Sugammadex kann aber auch in kritischen Situationen während der Operation eingesetzt werden, wenn eine sofortige Umkehr der Wirkung von Rocuronium erforderlich ist. Damit ermöglicht es dem Anästhesisten die bessere Kontrolle über das Ausmaß der Muskelentspannung. <table> <td width="110"></td><td> <b>Sugammadex</b> wirkt auf neuartige Weise, indem es die Moleküle des Muskelrelaxantiums einkapselt und so unwirksam macht. In klinischen Studien benötigte Sugammadex zur Umkehr der Wirkung von Rocuronium &Oslash; 3 min. Bisher eingesetzte Umkehrwirkstoffe sind langsam und gehen mit unerwünschten Nebenwirkungen einher. </td> </table> <small>EU-Zulassung für Sugammadex:<br>Erster Wirkstoff, der Relaxantien selektiv bindet</small>

GSK und Cellzome: Partnerschaft für Kinasen-Inibitoren

GlaxoSmithKline (<a href=http://www.gsk.com>GSK</a>) und <a href=http://www.cellzome.com>Cellzome</a> haben eine weltweite Allianz geformt, um neuartige Kinasen-Therapien gegen Entzündungskrankheiten zu entwickeln und zu vermarkten. GSK und Cellzome: Partnerschaft für Kinasen-Inibitoren <% image name="GSK_Logo" %><p> Die Partnerschaft ermöglicht GSK den Zugang zur Expertise von Cellzome bei der Identifizierung und der Entwicklung selektiver Kinase-Inhibitoren und der proprietären Kinobeads-Technologie. Letztere erlaubt es, während des physiologischen Wirkstoff-Screenings bessere Voraussagen zu treffen, ob diese Wirkstoffkandidaten in der klinischen Tests bestehen können oder nicht. Kinasen sind entscheidende molekulare Schalter im zellulären Signalweg, die eine zentrale Rolle in vielen Entzündungs-Antworten spielen. Selektive Inhibitoren erlauben einen neuen Ansatz einer therapeutischen Intervention in Krankheiten wie rheumatoide Arthritis oder Multiple Sklerose. GSK bekommt exklusive Lizenz-Optionen für Wirkstoffkandidaten aus dem Kinasenprogramm von Cellzome. Cellzome wird neben einer Upfront-Zahlung von 14,4 Mio £ im Gegenzuge Meilenstein- und Lizenzzahlungen erhalten.

In Berlin beginnt die 7-Tesla-Ära

Ein Kernspintomograph mit einem Magnetfeld von 7 Tesla soll künftig auch in der Herz-Kreislauf-Forschung eingesetzt werden. Jetzt wurde das 7 Mio € teure und 35 t schwere Gerät an das Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums (MDC) für Molekulare Medizin in Berlin-Buch angeliefert. <% image name="PTB_Kernspintomograph" %><p> <small> Der 32 t schwere Magnet, Herzstück des Kernspintomographen, wird vom Transporter gehoben. &copy; PTB </small> Im Gegensatz zu den bisher weitgehend üblichen 1,5- und 3-Tesla-Geräten wird sein höheres Magnetfeld für schärfere Bilder und bessere Einblicke in kleinste Strukturen des menschlichen Körpers sorgen. Ziel ist es, in der Herz-, Hirn- und Krebsforschung Krankheitsrisiken und -prozesse sehr früh aufzuspüren. Vor allem die Herzforschung per Kernspintomograph gilt als sehr schwierig und ist mit einem 7-Tesla-Gerät so gut wie komplettes Neuland. <% image name="PTB_Kernspintomograph2" %><p> <small> Der Magnet liegt in seiner Endposition: umgeben von einem Käfig aus insgesamt 250 t Stahl, der später das Magnetfeld nach außen abschirmen wird. Das Loch im Zentrum des Magneten ist die zukünftige Röhre, in die die Patienten geschoben werden. </small> So wartet ab Januar 2009, wenn das Gerät vollständig installiert ist, auf die Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) eine anspruchsvolle Aufgabe: Als physikalisch-technische Partner des Gemeinschaftsprojektes sind sie dafür zuständig, das einzigartige Potenzial dieses Tomographen für klinische Anwendungen nutzbar zu machen. Partner des Projektes sind neben MDC und PTB noch Siemens, Konstrukteur des 7-Tesla-Gerätes, und die Charité. Komplettiert wird die neue Ultrahochfeld-MRT-Anlage des ECRC durch ein 9,4-Tesla-Kleintier-MRT von Bruker. In Berlin beginnt die 7-Tesla-Ära

Forscher entwirren bisher unbekannte Protease

Forscher der Karl-Franzens-Uni und der TU Graz kristallisieren die 3D-Struktur eines Proteins der bisher nicht näher beschriebenen Proteasenfamilie M49 aus der Bäckerhefe. <% image name="TU_Graz_Protease" %><p> <small> Schema der neu entdeckten Proteasen-Struktur. </small> Bestimmt wurde die neue Struktur von Pravas Baral am Institut für Molekulare Biowissenschaften der Uni Graz. Seine Röntgenstrukturanalyse hat ergeben, dass es sich um einen neuartigen Faltungstyp handelt, der bisher noch nicht in der Natur beobachtet worden war. Die Struktur dieses Proteins gibt zudem Aufschluss über seine Funktionsweise - Erkenntnisse, die auch auf das menschliche Protein übertragbar sind und damit wichtige Impulse für die Medikamentenentwicklung liefern. Forscher entwirren bisher unbekannte Protease